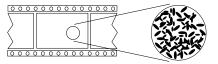
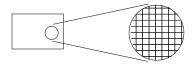

Going Digital!

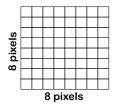

- What is Digital Photography?
- How Do Digital Cameras Work?
- About Image Quality (Megapixels, Compression, etc)
- · Fundamentals of the Digital Image
- · Digital Pros & Cons
- Digital Thru-Hiking

By: Jonathan Ley www.phlumf.com Updated for ALHDA-west Gathering October 2004

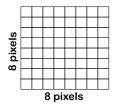
Digital vs. Film...



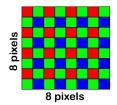
Digital vs. Film...


Film...

... is made of grains


Digital Sensor...

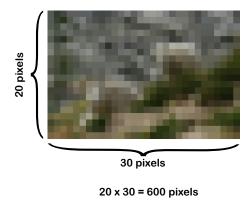
... is made of a grid.

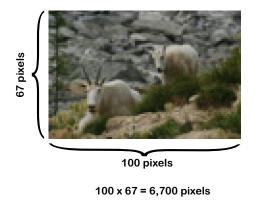

8 pixels x 8 pixels = 64 pixels

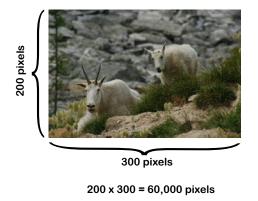
Each square in the grid can sense one point of light, or "pixel"

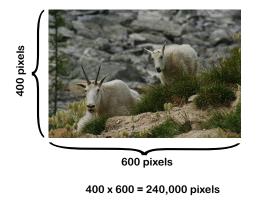
8 pixels x 8 pixels = 64 pixels

Each square in the grid can sense one color


8 pixels x 8 pixels = 64 pixels

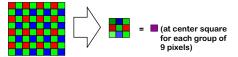

Each square contains a color filter.


The colors are arranged in a special pattern... (bayer filter pattern)



The camera mixes the colors from neighboring pixels to determine the "actual color" for each pixel.

How clear is clear? (a rough guide!)


Vertical	Horizontal	Pixels
480	640	307,200 C OK for e-mail
768	1024	786,432 C This projector!
1200	1600	1.9M
1500	1950	2.9M
1600	2100	3.4M Point & shoot film
1704	2272	3.9M
2000	2600	5.2M Cood 35mm print
2048	3072	6.3M Good 35mm slide
2400	3600	8.6M
2800	4200	11.8M
3200	4800	15.3M Medium format 6x7
4000	6000	24M Medium format 6x7
5000	7500	37.5M

• "Equivalent Clarity" is very subjective & a matter of MUCH debate!!!

"Ideal Resolution" vs. "True Resolution"

Other factors can help determine your "true resolution"

- Quality of the lens
- Quality of the sensor ("Noise", etc.)
- Quality of the photographer
- Shutter speed & camera "shake"
- Remember this...?

Data compression...

- Image files are usually "compressed" (.jpg is most common)
- More compression = smaller file size
- More compression = lower "quality"

Uncompressed 6.3 Megapixel Image = 13.8 Mb

Low Compression = 0.85 Mb

High Compression = 0.16 Mb

Data compression...

• Compressed file sizes also depend on the "complexity" of the image

Low Compression, 6.3 Megapixel Image...

Simple image = 0.85 Mb

Complex image = 3 Mb

Storage...

• Photos are stored as digital files on infinitely re-usable memory cards.

•Memory cards can be removed, re-inserted into the camera.

- Memory comes in many types / sizes
- Connect your camera (or a memory card reader) to your computer with a cable (USB, etc.)

•You can then print the image, e-mail it, put it on the www...

How much memory is enough?

- How many photos can you fit on a memory card?...
- Low compression... Average complexity...
- Actual results may vary!

		32Mb	64Mb	128Mb	256Mb	512Mb	_		
s	1.9M	42	85	170	340	679	-		
pixels	2.9M	28	56	111	222	445			
	3.4M	24	47	95	190	379			
a	3.9M	21	41	83	165	331			
amera	5.2M	16	31	62	124	248			
Ĕ	6.3M	13	26	51	102	205			
ö	8.6M	9	19	37	75	150			

Memory card size

...Number of photos

Going Digital... Pros & Cons.

- + Experimentation (no added cost for many more photos)
- + Immediate Feedback (photos displayed on Camera's LCD panel)
- + Long-Term Storage (no degradation)
- + The "Digital Darkroom" (big plus!)

+/- Traveling Flexibility (improving every year)

+/- Cost (cheaper "per shot", but computer, memory, batteries, camera, printer, etc. add up!)

- Batteries (only a problem on a long hike)
- Slide shows... (expensive digital projector)
- Color resolution & funky aberrations...

Adjustable White Balance Settings. (for shadows, clouds, indoor)

Indoor Lighting

Corrected

Greater Contrast Range With Some Digital Cameras

Digital

Digital Color gradients

High-contrast "bleeding"

On-the-fly ISO adjustments for low-light / fast shutter.

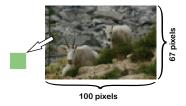
ISO 100

ISO 400

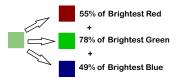
ISO 1600

Moire

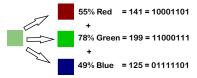
Aspect ratio on <u>many</u> digital cameras is different than 35mm



35mm Film 4 x 6



- "Grain" looks different than film
- Learning curve getting easier all the time... ...but new features are being added too!
- Whatever you buy will be old technology tomorrow!


- Digital images are made of pixels
- Each pixel is one solid color

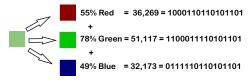
- A color is made from its primary components or "channels"
- Any color can be made from a combo of Red + Green + Blue
- That color is represented by a code of 1's & 0's or "bits"
- More bits = more precise color

- 8-bit / channel color (also called 24-bit color)
- 256 possible colors for each channel
- Supported by most major formats (.jpg, .tif, etc.)
- Very smooth color transitions possible.

100011011100011101111101 = 24-bit color = 16 Million possible colors

24 "bits" for each pixel

- 12-bit / channel color (also called 36-bit color)
- 4,096 possible colors for each channel
- Used by many higher-end digital cameras (RAW formats)
- Gives a wider range of editing possibilities



10001101101011000111101001111101 = 36-bit color = 68 Billion colors

36 "bits" for each pixel

- 16-bit / channel color (also called 48-bit color)
- 65,536 possible colors for each channel
- Used in some scanning & high-end publishing, etc.
- Extremely large file sizes

= 281 Trillion colors

48 "bits" for each pixel

All about DPI

• A pixel = A "Dot"

•DPI = Dots Per Inch

• DPI defines how "big" you want each pixel to be printed

300 "dots" @ 100 dpi = 3 inches horizontal 200 "dots" @ 100 dpi = 2 inches vertical

or

300 "dots" @ 50 dpi = 6 inches horizontal 200 "dots" @ 50 dpi = 4 inches vertical

or

300 "dots" @ 300 dpi = 1 inch horizontal 200 "dots" @ 300 dpi = 0.66 inches vertical

All about DPI

- DPI is an arbitrary measurement
- The DPI of an image is totally <u>defined by YOU!</u>
- The DPI of an image can be <u>RE-defined by YOU!</u>
- Higher DPI = Smaller, crisper printed image
- Lower DPI = Larger, fuzzier printed image
- With more pixels, you can print a larger, crisper image

How much DPI is enough?

- 72 dpi = most computer monitors
- 150 dpi = newsprint
- 300 dpi = fine photos / magazines, etc.
- The human eye can not easily perceive more than 300 dots per inch...

DPI, a rough guide...

Vertical		Horizontal		Pixels	100 dpi	200 dpi	300 dpi
480	х	640	=	307,200	4.8 x 6.4	2.4 x 3.2	1.6 x 2.1
768	х	1024	=	786,432	7.7 x 10.2	3.8 x 5.1	2.6 x 3.4
1200	х	1600	=	1.9M	12.0 x 16.0	6.0 x 8.0	4.0 x 5.3
1500	х	1950	=	2.9M	15.0 x 19.5	7.5 x 9.8	5.0 x 6.5
1600	х	2100	=	3.4M	16.0 x 21.0	8.0 x 10.5	5.3 x 7.0
1704	х	2272	=	3.9M	17.0 x 22.7	8.5 x 11.4	5.7 x 7.6
2000	х	2600	=	5.2M	20.0 x 26.0	10.0 x 13.0	6.7 x 8.7
2048	х	3072	=	6.3M	20.5 x 30.7	10.2 x 15.4	6.8 x 10.2
2400	х	3600	=	8.6M	24.0 x 36.0	12.0 x 18.0	8.0 x 12.0
2800	х	4200	=	11.8M	28.0 x 42.0	14.0 x 21.0	9.3 x 14.0
3200	х	4800	=	15.3M	32.0 x 48.0	16.0 x 24.0	10.7 x 16.0
4000	х	6000	=	24M	40.0 x 60.0	20.0 x 30.0	13.3 x 20.0
5000	х	7500	=	37.5M	50.0 x 75.0	25.0 x 37.5	16.7 x 25.0
		~	_	\sim			

Size of camera's sensor (pixels)

Size of printed image (inches)

Considerations for a long hike

- Weight, batteries, memory cards, logistics
- How many photos do you plan to take?
- What will you do with your photos when you're done?
 - Web site
 - Slide show
 - Photo album/scrapbook
 - e-mail / regular mail to family & friends
 - Make postcards? etc...

Digital Thru-hike Strategies

All plans:

• Battery Charger in a drift box.

Plan "A"

• Buy tons of memory cards & treat like film - ration your photos per section or per day.

• Sell the memory on "e-bay" when you get done.

Plan "B"

- Mass-Storage device in your drift box
- 40G+ Dedicated Mass-Storage ~\$200?
- Quickly becoming one of the best options.

Digital Thru-hike Strategies

Plan "C"

- Buy 3 to 4 cards.
- When you fill up a card, mail it home.
- Person at home downloads photos to computer & mails cards to your next stop so you can re-use them.
- Person at home must be computer savvy & committed!

Plan "D"

- Burn your photos to CD-ROM's en-route when you get to a big town, or "trail angel"
- Maybe more feasible in coming years.

Digital Thru-hike Strategies

Plan "E"

- e-mail your photos home as you go.
- Probably a BAD PLAN for the next 5-10 years!!!

Plan "F"

•Go "half-digital" - digital till you run out of memory & then switch to film.

Plan "X"

• Be creative! mix it up!

Digital Thru-hike Tips

- Minimize use of LCD panel to save batteries
- Beware of bad weather!
- Change quality/size settings for the quality of the shot:
 - Funny trail sign = low quality/size
 - Hiking buddies = medium quality/size
 - View from Forester Pass = High quality/size

• Erase / Edit "bad" photos when you get to town & have batteries/power to spare.

Going Digital!

By: Jonathan Ley www.phlumf.com Updated for ALDHA-west Gathering October 2004